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Ebola and Marburg viruses are emerging/re-emerging pathogens that pose a significant 
threat to human health. These naturally occurring viral infections frequently cause a lethal 
hemorrhagic fever in humans and nonhuman primates. The disastrous consequences of 
infection with these viruses have been pursued as potential biological weapons. To date, 
there are no therapeutic options available for the prophylaxis or treatment of infected 
individuals. The recognition that Ebola and Marburg viruses may be exploited as 
biological weapons has resulted in major efforts to develop modalities to counter infection. 
In this review, select technologies and approaches will be highlighted as part of the critical 
path for the development of therapeutics to ameliorate the invariably devastating 
outcomes of human filoviral infections.
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Ebola and Marburg virus, family Filoviridae,
are among the most lethal microbes known to
humans, with case fatality rates often
approaching 90%. Since their discovery several
decades ago, episodes or outbreaks have been
sporadic and largely contained in endemic
areas, primarily in Central Africa. However,
concern about the natural or unnatural intro-
duction of these agents outside of the endemic
areas has dramatically increased both research
interest and public awareness of the filoviruses.
Currently, there are no preventive vaccines or
postexposure treatments available for human
use. However, significant progress has been
made over the last 5 years in developing pre-
ventive vaccines against the filoviruses. For
example, a candidate vaccine based on a
recombinant replication-defective adenovirus
completely protected nonhuman primates
(NHPs) from Ebola virus infection [1,2], while
a second candidate vaccine based on a recom-
binant replication-competent vesicular stoma-
titis virus completely protected monkeys
against both Ebola and Marburg viruses [3].
Progress in developing treatments and
therapies against the filoviruses has been much
slower, and no postexposure modality has been
able to uniformly protect NHPs.

Horizons for filovirus therapeutics
The lack of therapeutics targeting filoviruses is
an important public health concern [4]. The
field can be segregated into:

• Molecules targeting the interplay between
the viral machinery and its host

• The viral machinery itself

• Inducers of an inhospitable host

• Compounds that lessen the impacts of the
disease

Naturally occurring filovirus transmission
between humans can be constrained through
the use of barrier nursing practices [5–7]. In spite
of this, aspects of controlling outbreaks in epi-
demic regions and facets of biological weapons
mandate the development of prophylaxis as
additional therapeutic options [4].

On the course to the development of filo-
viral therapeutics, there are a few key advances.
Notably, the development of reverse genetics
systems [8–11], NHP [12–15] and rodent model
systems [16,17] and an improved understanding
of the clinical picture of filoviral hemorrhagic
fever (HF) [18–24] provide important founda-
tional elements toward successful drug discov-
ery. The reverse genetics systems have provided
the ability to genetically manipulate the virus.
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For drug-discovery efforts, this has culminated in the develop-
ment of an engineered Ebola virus expressing the green fluores-
cent protein (GFP) [9]. GFP is expressed as an extra trans-
criptional unit. The resulting fluorescent signal is dependent
upon the activity of the RNA-dependent RNA viral poly-
merase. Using this recombinant virus, a high-throughput
cell-based assay was developed.

For safety and security reasons, filoviruses can only be
investigated in Biosafety Level (BSL)-4 laboratories. This has
been one of the traditional impediments to drug discovery.
The new fluorescent cell-based, drug-discovery assays are
facilitating the higher throughput screening of chemical
libraries. This assay has a shortened incubation time, reduced
manipulations and a larger linear range. Previous library
screening efforts were based on the use of surrogate viruses
such as respiratory syncytial virus as a predictor of potential
antivirals. To date, this approach has not been successful. It is
not surprising given the significant sequence variation between
the different viral families.

Animal models are critical for the initial evaluation of
efficacy, subsequent development of dose, schedule and
regimen, and more importantly, a convenient system to assess
possible intervention points. Currently, there are NHP models
for Marburg and Ebola viruses [13,15], a guinea-pig model for
Marburg and Ebola virus [17] and a mouse model for Ebola
virus [16]. The NHP models provide the best recapitulation of
human disease, while the rodent models have significant gaps,
particularly in observed pathology compared with primates [25],
although they are more convenient. Rodent model utility is
best restricted to evaluating antivirals that target the viral
machinery. However, the NHP models for Ebola virus have
proven to be invaluable tools. In fact, a temporal study using a
cynomolgus macaque model has provided valuable insight into
the pathology and pathogenesis associated with Ebola virus
infection [12,14]. The enhanced understanding of the dysregula-
tion of the coagulation system has led to the first treatment
modality with efficacy in a NHP model system [26]. By inter-
fering with the tissue-factor pathway of the coagulation
cascade, some animals were able to survive infection. The
enhanced understanding of the pathophysiology may lead to
other weak points in the viral replication strategy. This under-
standing of the multisystem response to infection has led to a
potential new class of inhibitors that target the disease process
rather than the virus itself.

The pathogenesis of filoviral infection of humans is
substantially lacking. The difficulty in documenting the natural
history of filoviral infection of humans has been, in part, due to
the distance of human cases from contemporary medical care
and laboratory facilities and the need for high-level contain-
ment. However, a few studies have been performed under field
conditions, which included portable and/or improvised labora-
tories for evaluating archived samples sent to high-containment
facilities outside of endemic areas. A recent report suggested
that lower peak viral loads correlated with a better outcome [24];
thus, a potential antiviral may not need a sterilizing effect to

transform Ebola virus infection into a more survivable disease.
This finding is consistent with the improved outcomes of HIV-
infected patients with reduced viral loads. Natural history
studies are needed to improve our understanding of the clinical
picture of disease. These studies will lead to developing
correlates of survival. The critical parameters that tip the
balance between surviving or succumbing to a filoviral
infection need to be further clarified. Critical parameters may
influence future drug design.

Together, these advances are providing the foundation for a
successful drug discovery leading to an effective antiviral. How-
ever, the successful identification of compounds and drugs that
inhibit viral replication lies with traditional issues of pharmaco-
kinetics, bioavailability, drugability and toxicity. The conver-
sion of a drug hit to an effective antiviral will depend on the
successful resolution of these issues. These aspects of drug
development are often not given the appropriate attention by
investigators. Translation of in vitro antiviral activity to in vivo
efficacy may be lost owing to poor pharmokinetics, toxicity and
bioavailability. Advancing a promising in vitro led to in vivo
efficacy should include considerations of pharmokinetics,
toxicity and bioavailability.

Biology of filoviruses
Filoviruses are negative-sense, single-strand, enveloped viruses
(biology reviewed in [27–31]). The unique ultrastructural appear-
ance of the virion is the basis of the name (greek = thread like).
The virus is composed of two major components. The viral
envelope is composed of host-derived plasma membrane
studded with a virally encoded type 1 glycoprotein (GP).
Likely, the VP24 protein is also part of the envelope. Contained
within the virion is the ribonucleoprotein (RNP). The RNP is
built around the negative-strand RNA genome encased with
the nucleoprotein (NP) and the minor nucleoprotein (VP30).
The viral polymerase complex is composed of the large (L)
protein and a phosphoprotein (VP35). Filovirus entry is
mediated by attachment to cell-surface receptors through the
viral GP. The virus is internalized into the cellular endosomes.
The acid pH of the endosome is thought to trigger a confirma-
tion shift of the GP protein to zipper the coiled-coil domains
together, bringing the viral membrane and cellular membrane
into close proximity. The two membranes fuse releasing the
RNP into the cytosol.

In the cytosol, the RNP can initiate the transcriptional
program. The RNA-dependent RNA polymerase transcribes
each gene. At some point during transcription, a switch is
initiated, and the polymerase will begin to replicate the
genome. Genomic RNA is encapsidated while messenger
transcripts are not. The entire replicative cycle occurs in the
cytosol of the cell. Assembly is believed to be orchestrated by
VP40. VP40 is thought to function as a ‘bandleader’. Nascent
RNP structures are assembled and brought to the plasma
membrane by interaction with VP40 along rails of actin. At the
plasma membrane, the RNP meets with GP that has been
processed and transported to the cell surface through the
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endoplasmic reticulum–Golgi-body complex. At the cell
surface, the RNP buds through the plasma membrane captur-
ing the viral envelope. The forming viral membrane fuses with
itself and pinches off from the cell. This particle is ready to
infect another cell.

Pathology & pathogenesis of filoviruses
Identifying early and strategic events that lead to the develop-
ment of severe filoviral HF is important for the rational
development of treatments and therapies. As noted before, few
cases of filoviral HF have been managed and studied outside of
the endemic region of Central Africa. Nonetheless, a handful of
studies have provided valuable information on the kinetics of
the host immune response to filoviral infection. In addition,
animal models, in particular NHP, have provided important
information regarding the pathogenesis of filoviral HF.

Ebola and Marburg infection of humans and NHP are
characterized by coagulation disorders, by a dramatic loss of
lymphocytes and a concomitant degeneration of lymphoid
tissues. It is important to understand, however, that lymphocytes
do not support the replication of Ebola or Marburg virus. The
massive die-off of lymphocytes during the course of infection
occurs by the process of apoptosis [32,33], although the
mechanism for this ‘bystander’ loss of lymphocytes is unknown.

Filoviral infection appears to trigger a strong proinflamma-
tory response both in vitro and in vivo as reported in a number
of studies [12,26,34–39]. Across these studies, several inflammatory
mediators including interleukin (IL)-6, tumor necrosis factor
(TNF)-α and nitric oxide (NO) appear to be consistently
implicated as playing an important role in the development of
filoviral HF. Specifically, TNF-α and NO are thought to
contribute to the vascular instability seen during filoviral
infection [39–41] and in one study, elevated blood levels of NO
were in fact associated with mortality [38].

Although defects in blood coagulation and fibrinolysis are
consistent features of filoviral HF, the loss of blood is
infrequent and, in fact, even when present, is not significant
enough to account for death. Disseminated intravascular coag-
ulation (DIC) is often viewed as a notable manifestation of filo-
viral HF. A number of studies have shown histological and bio-
chemical evidence of DIC syndrome during filoviral infection
of humans and NHP [12,14,25,26,42–48]. The mechanism(s) for
triggering the coagulation disorders is not completely under-
stood. For Ebola HF, recent studies have proposed that the
coagulopathy is triggered by several factors, particularly during
later stages of disease, and implicate the expression/release of
tissue factor from filovirus-infected monocytes/macrophages as
a major factor in inducing the coagulation defects observed in
filoviral infections [14].

Inhibitors of the viral machinery
An attractive target for antivirals is to disrupt the viral machinery.
Filoviruses are economical viruses encoding seven viral proteins.
In comparison, orthopoxviruses require almost 200 proteins to
successfully perform the viral replication program. Currently, all

of the Ebola virus proteins are believed to be essential for
competent replication. Some of the more promising potential
inhibitors of the viral machinery are targeting membrane fusion,
viral replication/transcription and assembly.

Membrane fusion
Filovirus entry is a multistep process. The viral genomic material
(RNP) is delivered to the cytosol through the fusion of the viral
and cellular membranes constructing an exit for the RNP from
the virion. Delivered to the cytosol, the RNP can initiate the viral
transcription and replication program. The attachment and
fusion mechanisms are mediated by the viral GP. GP is a
disulfide-linked heterodimer of GP1 and GP2 [49–54].

GP2 is presumably responsible for the viral fusion [53,55–62].
The GP2 subunit contains structural similarities to other class I
membrane proteins such as the influenza virus HA1 and HIV
gp41 proteins. Enfuvirtide (T20) has shown efficacy for treat-
ing HIV infection by specifically targeting the coiled-coil motif
in gp41 [63]. T20 is a competitive inhibitor of the coiled-coil
motif in gp41. The coiled-coil domain of the Ebola virus GP2
is a promising target [55–57,60,61,64]. This domain has significant
structural homology to the established motifs in the influenza
virus HA1 and HIV gp41 [53,64,65]. Several groups have shown
that peptides can competitively inhibit this fusion activity [61].
Genetic studies have shown that with pseudotyped viruses
packaging mutant GP molecules, the predicted coiled-coil
domain is essential for GP function [55–57,64]. Inhibiting the
coiled-coil motif may prevent the release of the RNP into the
cytosol. The motif is highly conserved between Ebola and
Marburg viruses. It is possible that a single small molecule
could target both, but it is likely that unique molecules would
be needed.

Another approach to interfering with filoviral fusion was
recently raised by studies performed by Chandran and
colleagues [66]. This group proposed that the conformational
changes that occur in the Ebola virus GP that initiates fusion,
requires the activity of the endosomal cysteine proteases,
cathepsin B and cathepsin L. This group further reported that
inhibitors of these cathepsins reduced the production of Ebola
virus in vitro, and suggested that these compounds may have
therapeutic utility. It has been noted that these compounds are
not likely to be used in vivo as they are toxic to cells, but that
development of less toxic cathepsin inhibitors warrants
investigation [67].

Viral replication/transcription
Viral genomic transcription and replication are highly drugable
targets. Several successful antivirals have targeted genomic
transcription/replication, for example, the nucleoside inhibitors
of HIV, acyclovir for herpes simplex virus and ribavirin for the
arenviruses and bunyaviruses. Filoviruses replicate and
transcribe their genomes using a virally encoded RNA-
dependent RNA polyermase. This polymerase complex is
composed of the NP, VP35, VP30, the L protein and a RNA
genome [68]. To date, there are no compounds specifically
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targeted to this complex. However, this target is highly
amenable to drug discovery. The replication transcription
machinery can be reconstituted in vitro using recombinant
plasmids expressing the four proteins and a synthetic model
genome encoding a marker protein (minigenome system) [69].
The marker gene encoded by the model RNA will only be tran-
scribed if a functional RNA polymerase is reconstituted. Most
importantly, this system would not produce infectious viruses.
The minigenome system is amenable to high-throughput drug
discovery in a BSL-2 environment. Large chemical libraries can
be down-selected and a smaller subset of compounds tested
using infectious viruses in the BSL-4 facilities.

This minigenome system is also amenable to using a peptid-
omics approach for discovery of rationally designed inhibitors.
Compounds could be targeted to disrupt RNA binding and
viral protein/protein interactions. The association of the NP,
VP30, VP35, L and RNA are essential to perform the replica-
tion/transcription program [69]. VP30 oligomerizes and is
essential for replication [70]. Oligopeptides that disrupt the
oligomerization are able to reduce the percentage of infected
cells. The concentrations needed to achieve inhibition are higher
than therapeutically applicable; it would be possible to mine
small molecules with similar activities with the expectation of
developing a compound that could be evaluated in vivo. How-
ever, many of the other essential interactions have not been
extensively mapped. It is possible to determine the interactions
through various biochemistry  and genetics-based systems.

A third target may be through the use of nucleoside analogs
to inhibit chain elongation or create an error catastrophe event.
Error catastrophe may be the mechanism behind the inhibition
of Hantaan virus by ribavirin [71]. Ribavirin, the prototypical
inhibitor for many RNA viruses is not effective against
Ebola [72] or Marburg virus [73]. However, there are many deriv-
atives of nucleoside analogs generated for HIV drug discovery
and anticancer discovery efforts that may contain activity that
have yet to be tested. These compounds would be amenable to
screening through the minigenome system, and the subsequent
down-selected compounds would be evaluated by using the
fluorescent cell-based assay.

A relatively new technology is the use of RNA interference
(RNAi). RNAi is a nucleic acid-specific method to ablate intra-
cellular RNA molecules. There are several examples of RNAi
technology being used as antivirals to treat viral infections,
including Marburg virus [74], in cell culture experiments.
Experience from animal models suggests that this technology
may have significant in vivo potential [75]. The molecules are
delivered as RNA oligos, DNA constructs expressing the RNAi
molecule and defective retroviruses. The difficult factor is the
choice of target sequence and delivery. Targets in the genome
would be difficult to achieve. The filoviral genomes are encapsi-
dated with a nucleocapsid protein protecting the RNA. How-
ever, viral messenger transcripts are unprotected by the nucleo-
capsid. It is believed that the abundance of messenger RNA
(mRNA) correlates with the position of the gene relative to the
3´ end. Like all single-strand RNA, there will be regions that

are structured and inaccessible to the RNAi molecule. There is
a greater abundance of NP transcripts than VP35, and many
more than L using the vesicular stomatitis virus model. It may
be easier to target lower abundance transcripts that produce
essential genes than higher abundance molecules. Furthermore,
disrupting the ratio of gene transcripts negatively affects the
fitness of the virus. Complete ablation of mRNA transcripts
may not be necessary to significantly affect the outcomes of
filoviral infections. Filoviruses have significant sequence
variability. However, they are hyperconserved domains which
may serve as useful targets.

Inhibitors of the viral machinery & the host
Filoviruses corrupt cellular machinery to transform the
environment into a favorable cellular condition for replication
and to perform the replication program. Many of the viral
proteins interact with host cellular proteins. These protein/pro-
tein interactions are often essential for viral replication. There
are several interesting virus host protein–protein interactions
that if disrupted, may yield an effective antiviral.

VP40 interacts with several host proteins to promote the viral
budding process [76–81]. These interactions are mapped to a
proline-rich motif known to interact with cellular proteins
containing the WW domains [80]. Recent studies have shown
that this motif is not essential for viral replication. With reverse
genetics, the PPxY motif was genetically ablated, which resulted
in peak viral yields reduced by 1 log [82]. However, as noted pre-
viously, Towner and colleagues found that in Ebola virus-
infected patients, reduction of viral loads correlated with
improved outcomes [24]. As a result, it may not be necessary to
achieve a sterilizing effect to achieve an effective antiviral.

VP35 functions as the viral interferon (IFN) antagonist [83].
The host protein IFN regulatory factor (IRF)-3 is a major
effector of the cellular innate immune response. VP35 inhibits
the activation of IRF-3 and the subsequent downstream
events [84]. It is also thought that VP24 may function, in part,
as an IFN antagonist [85]. The innate immune response most
likely has a pivotal role in productive infection of Ebola virus.
Viral IFN antagonists modulate the host by releasing the IFN-
induced blocks to replication. Viruses lacking IFN antagonists
are often restricted to replicating in IFN-deficient hosts. By
targeting the activity of VP35 and/or VP24, Ebola virus may be
more susceptible to the antiviral activities of the innate immune
system [86].

GP functions to attach viral particles to cell-surface
receptors [87,88]. There has been considerable effort in the
development of monoclonal antibodies for treating filoviral
HF [89–92]. Passive transfer experiments have been highly
successful in rodent models, but these encouraging results have
unfortunately not translated as well to NHP. For example, high-
titer hyperimmune horse serum failed to protect NHP when
administered immediately after Ebola virus infection [93]. Conva-
lescence whole blood from Ebola-immune rhesus monkeys also
failed to protect treated macaques from an experimental Ebola
virus challenge (TW GEISBERT, UNPUBLISHED OBSERVATION).
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Conversely, a few studies reported beneficial effects in NHP using
Ebola-specific immune globulins [94,95]. Differences in NHP
species and challenge doses used may account for the different
outcomes among these various passive immunotherapy efforts.

Isolating the cell-surface receptor for filoviruses may provide
additional targets. Filoviruses use cell-surface receptors to gain
cellular entry mediated by the viral GP. GP has been a
traditional target for antibody-based strategies. Small molecules
were recently shown to be effective at blocking viral entry for
HIV. BMS-806 was discovered through a cell-based entry-
screening assay [96]. Although the compound does not interfere
with viral attachment, it prevents coiled-coil domains from
being exposed independent to the activity of T20. Similar
approaches could be developed for filoviruses. A similar
compound for filoviruses would likely have to be stably bound
through a large pH range. GP pseudotyped viral vectors
expressing various reporter genes could be used for drug-
discovery screening. Wool-Lewis and Bates demonstrated that
GP could be pseudotyped with the murine leukemia virus ret-
roviral core [88]. The pseudotyped constructs were neutralized
by Ebola virus-specific antibodies and entered the cell through
the endosomal pathway. These types of surrogate reporters for
filoviruses could be used to screen large chemical libraries for
entry inhibitors. GP pseudotype vectors have also been
developed using other systems including vesicular stomatitis
virus [87] and HIV [97].

Inducers of an inhospitable host
Filoviruses have a host range that appears to be restricted to
humans and NHP. Rodents are not susceptible to filoviral-
induced disease unless specifically adapted strains are
used [16,17,86]. However, IFN-deficient mouse systems are
susceptible to wild-type Ebola virus strains on first
exposure [86]. Pretreating cells with type I IFN can inhibit viral
replication, and various mouse studies suggest that IFN can be
effective. IFNs function by activating cellular defense
mechanisms. These mechanisms are nonspecific.

IFN-α2b was not successful as a postexposure treatment for
Ebola HF in NHP [93]. Likewise, IFN-α2a showed little efficacy
when administered to baboons shortly before and after Ebola
virus challenge [94] or to African green monkeys when adminis-
tered shortly after Marburg virus challenge [98]. However, recent
studies with other viruses have suggested that antiviral activities
may depend on the species of IFN used. Further studies with
different IFNs have yet to be performed. An alternative strategy
is to induce the host innate immune response through chemical
or molecular inducers. Polyriboinosinic/polyribocytidylic acid
(poly IC/LC) was shown to protect mice from lethal Ebola
virus challenge [99]. It is possible that these compounds induce
activation of the RNA-dependent protein kinase (PKR), 2´-5´
oligoadenylate synthetase (OAS) and Mx systems. Activation of
these systems renders cells retractile to infection. Other small
molecules could be used to activate the toll-like receptor (TLR)
to stimulate the system with a similar activity as that of poly
IC/LC [100].

Compounds that mitigate the impacts of the disease
Filoviruses are highly aggressive pathogens that cause a rapid
loss of homeostasis in the infected host. One strategy to treat
these acute infections and improve survival is to modulate
the host immune response. To date, there are few reports
describing efforts to alter the disordered proinflammatory
response that seems to be an important attribute of filoviral
HF. Partial protection of small cohorts of Marburg virus-
infected guinea-pigs was demonstrated using the immuno-
dulator desferal [73], or with IL-1 receptor antagonist (IL-
1RA) or anti-TNF-α serum [101]. In view of the potentially
important pathogenic role of TNF-α and other cytokines
such as IL-6 in filoviral HF, the in vivo neutralization of IL-6
could have therapeutic utility in ameliorating the lethal
effects of Ebola virus HF. Anti-IL-6 approaches can mitigate
the deleterious effects of endotoxin-induced sepsis in several
animal models [102,103].

Apoptosis of bystander lymphocytes is another important
feature of filoviral HF, and ostensibly contributes to overt
immunosuppression. Therapeutic interventions to protect
lymphocytes have been employed for other diseases. As an
example, treating HIV-infected mice with a neutralizing anti-
TNF-related apoptosis-inducing ligand (TRAIL) monoclonal
antibody significantly reduced the development of apoptotic
CD4 T cells [104]. In addition, caspase inhibitors showed some
protection of lymphocytes and improvement in survival in
murine models of sepsis [105]. Clearly, treatments directed at
protecting bystander lymphocytes from premature death have
merit; however, as the exact mechanism(s) responsible for
inducing lymphocyte apoptosis during filoviral HF have yet to
be elucidated, the development of specific protection strategies
will be problematic. Moreover, in order for such strategies to
have utility for filoviral infections, it will likely be necessary to
restrict protection from apoptosis to lymphocyte populations
and not to filovirus-infected cells, which ideally would be
eradicated and not inadvertently spared.

A final host-modulation strategy that may have utility in
combating filoviral infections is to treat the coagulation
disorders that develop during the course of disease. Although
heparin appeared to have some benefit as a supportive treat-
ment in two patients infected with Marburg virus [106], it did
not improve outcome in treating Ebola HF [48]. As noted previ-
ously, infection of primate monocytes/macrophages induces the
production of tissue factor [14], and a treatment strategy was
based on this finding. Indeed, in a proof-of-concept study, a
third of Ebola virus-infected rhesus monkeys that were treated
with a protein, recombinant nematode anticoagulant protein
c2 (rNAPc2), that prevents blood clotting by blocking the
Factor VIIa/tissue factor pathway, survived challenge in a
uniformly lethal model [26].

Other modulators of blood coagulation may also have use in
treating filoviral HF. For example, temporal analysis of Ebola-
infected NHP suggests that substantial declines in circulating
levels of plasma protein C may in part contribute to the coagu-
lopathy that typifies filoviral HF [14]. It is worthy to note that
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recombinant human activated protein C can significantly
reduce mortality in patients with severe sepsis [107], and may
also have use in treating cases of filoviral HF.

Conclusion
Filovirus drug discovery is at a crossroads. The first
compounds are beginning to show some efficacy in NHP
models. Several classes of compounds are being developed.
This review of findings from a number of studies suggests that
combinations of antivirals may be needed to achieve sufficient
efficacy. For example, a compound inhibiting viral replication
and a separate compound modifying disease may be needed.
Several viruses require combination therapy to be effective;
HIV and hepatits C virus. There is a paucity of compounds
that are ready for advanced development. Much of the basic
understanding of filoviruses and the molecular mechanisms
by which they cause disease remains lacking, and therein lays
the difficulty in developing novel targets.

Expert commentary
Novel inhibitors of filoviruses are winding their way through
in vitro systems and early in vivo efforts to demonstrate
efficacy. However, it is likely that there will be no ‘magic
bullet’ that will be able to confer uniform postexposure
protection against these highly aggressive pathogens. Rather,
combinations of drugs may be required. The critical factor in
advancing promising antiviral strategies is the identification
of a pharmaceutical partner to invest opportunity costs into
the movement of compounds from the laboratory environ-
ment to the market. Historically, there has been a small global
market for treatments and therapies against rare and exotic
pathogens, such as the filoviruses. Government efforts have
been made to generate artificial markets; however, these are
minuscule in comparison with traditional pharmaceutical
areas. Industrial partners bring unique skill sets, specifically,
in bringing compounds through the regulatory and approval
process. It is essential that promising compounds be partnered
with a pharmaceutical company.

Five-year view
The availability of plasmid-based systems for Ebola and
Marburg viruses, and the relatively recent development of
reverse genetics systems for Ebola virus will continue to allow
investigators to dissect critical molecular actions of these viruses
in the host system. During the next 5 years, we expect that these
systems will be exploited to identify important drugable targets.
New fluorescent cell-based drug-discovery assays will facilitate
high-throughput screening of chemical libraries, and should be
pivotal in identifying candidate antivirals. Moreover, advances
in the development of efficient delivery systems for antigene
technologies, such as RNAi, will make this a viable approach for
filoviral therapeutics. Finally, we believe that uniform postexpo-
sure protection in the more stringent NHP models is achievable,
but will depend on the prompt initiation of treatment, and will
probably require combinations of different drugs.
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Key issues

• Infection with Ebola or Marburg virus is usually fatal. However, outbreaks of Ebola and Marburg hemorrhagic fever (HF) are 
infrequent and have been geographically restricted primarily to Central Africa.

• There are no vaccines or treatments available for filoviral HF. Significant advances have been made in developing candidate vaccines 
against Ebola and Marburg viruses; however, the development of therapeutics lags far behind.

• A recent and highly publicized outbreak of Marburg virus in Angola coupled with the increased awareness of bioterrorism has 
dramatically changed perspectives regarding the need for therapeutics against Ebola and Marburg viruses.

• The efficacy of any treatments or therapies against Ebola or Marburg viruses cannot practically or ethically be assessed in humans. 
Approval of therapeutics for use in humans by the US FDA will probably rely on a bypass rule that permits companies to use 
preclinical test data demonstrating efficacy in two relevant animal models in conjunction with Phase I studies.

• A number of promising technologies, including antigene strategies and drugs that modulate coagulation disorders that typify 
filoviral HF, are under development as potential treatments. However, results from studies of animal models suggest that effective 
treatment may require a multipronged approach that employs several compounds targeting different pathways.
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